Просмотреть запись

Detection and evaluation of anthropogenic impacts on natural forest ecosystems from long-term tree-ring observations

Электронный архив УГЛТУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Detection and evaluation of anthropogenic impacts on natural forest ecosystems from long-term tree-ring observations
 
Автор Bogachev, M. I.
Grigoriev, A. A.
Pyko, N. S.
Gulin, A. N.
Grigorieva, A. V.
Chindyaev, A. S.
Kayumov, A. R.
Tishin, D. V.
 
Тематика CLIMATE VARIABILITY
DETRENDED FLUCTUATION ANALYSIS
LOCAL TREND DETECTION
LONG-TERM CORRELATIONS
TREE RING WIDTH
CHEMICAL DETECTION
CLIMATE CHANGE
CLIMATE MODELS
DYNAMICS
ECOSYSTEMS
FORESTRY
SOIL MOISTURE
ANTHROPOGENICS
CLIMATE VARIABILITY
CLIMATE VARIATION
DATA SERIES
DETRENDED FLUCTUATION ANALYSIS
DRAINAGE EXPERIMENTS
LOCAL TREND DETECTION
LONG-TERM CORRELATIONS
TREE-RING WIDTH
TREND DETECTION
DROUGHT
CLIMATE VARIATION
DETECTION METHOD
DROUGHT STRESS
HEAT WAVE
TREE RING
DATA
DRAINAGE
DROUGHT
DYNAMICS
ECOSYSTEMS
FORESTRY
TREES
TRENDS
 
Описание Anthropogenic interventions lead to various direct and indirect impacts on natural ecosystems that are often hindered by natural long-term variability, and thus their detection and evaluation remain challenging. Ecological systems are strongly affected by climate variations that typically exhibit long-term correlations capable of imitating or hindering external trends in finite-time observations, thus complicating their detection and correct attribution to either anthropogenic interventions or natural variability. Here we focus on the quantitative assessment of the alterations in the tree-ring width (TRW) of four tree species in response to the changes in the soil water regime following a drainage experiment in a dwarf-shrub type peatland forest. We consider the long-term effects of the intervention, focusing on two characteristic quantities: the durations of clusters when significant discrepancies with relevant controls could be observed in every single consecutive year, and relative trends in the data reflecting long-term, gradual changes in the ecosystem. By extrapolating pre-drainage TRW dynamics and adjusting for recent climate variations using a multivariate model, we simulate surrogate data series that act as additional controls for the post-drainage time period. By comparing the long-term dynamics of the observational TRW data series against both natural and surrogate controls over several decades following the drainage experiment, we evaluate long-term alterations and gradual trends in the tree growth dynamics and reassess the statistical significance of these effects, taking into account long-term correlations in the natural TRW variations. Our results also indicate pronounced alterations in the drought stress response characterized by significant negative trends in the tree growth dynamics following the 2010 heatwave and associated flash drought in the drained area, while no similar effect could be observed in the undrained area, indicating that the increased productivity of the forest ecosystem following the drainage likely comes at the cost of its reduced drought stress resilience. © 2024 Elsevier B.V.
Ministry of Science and Higher Education of the Russian Federation: FSEE-2020-0002
The authors would like to acknowledge the financial support of this research by the Ministry of Science and Higher Education (assignment No. FSEE-2020-0002 ).
 
Дата 2024-05-23T08:39:56Z
2024-05-23T08:39:56Z
2024
 
Тип Article
Journal article (info:eu-repo/semantics/article)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Detection and evaluation of anthropogenic impacts on natural forest ecosystems from long-term tree-ring observations / M. I. Bogachev, A. A. Grigoriev, N. S. Pyko [et al.] // Forest Ecology and Management. – 2024. – Vol. 558. – № 121784. DOI: 10.1016/j.foreco.2024.121784.
0378-1127
no full text
https://elar.usfeu.ru/handle/123456789/13171
 
Язык en
 
Издатель Elsevier B.V.
 
Источник Forest Ecology and Management